Control of actin polymerization in live and permeabilized fibroblasts
نویسندگان
چکیده
We have investigated the spatial control of actin polymerization in fibroblasts using rhodamine-labeled muscle actin in; (a) microinjection experiments to follow actin dynamics in intact cells, and (b) incubation with permeabilized cells to study incorporation sites. Rhodamine-actin was microinjected into NIH-3T3 cells which were then fixed and stained with fluorescein-phalloidin to visualize total actin filaments. The incorporation of newly polymerized actin was assayed using rhodamine/fluorescein ratio-imaging. The results indicated initial incorporation of the injected actin near the tip and subsequent transport towards the base of lamellipodia at rates greater than 4.5 microns/min. Furthermore, both fluorescein- and rhodamine-intensity profiles across lamellipodia revealed a decreasing density of actin filaments from tip to base. From this observation and the presence of centripetal flux of polymerized actin we infer that the actin cytoskeleton partially disassembles before it reaches the base of the lamellipodium. In permeabilized cells we found that, in agreement with the injection studies, rhodamine-actin incorporated predominantly in a narrow strip of less than 1-microns wide, located at the tip of lamellipodia. The critical concentration for the rhodamine-actin incorporation (0.15 microM) and its inhibition by CapZ, a barbed-end capping protein, indicated that the nucleation sites for actin polymerization most likely consist of free barbed ends of actin filaments. Because any potential monomer-sequestering system is bypassed by addition of exogenous rhodamine-actin to the permeabilized cells, these observations indicate that the localization of actin incorporation in intact cells is determined, at least in part, by the presence of specific elongation and/or nucleation sites at the tips of lamellipodia and not solely by localized desequestration of subunits. We propose that the availability of the incorporation sites at the tips of lamellipodia is because of capping activities which preferentially inhibit barbed-end incorporation elsewhere in the cell, but leave barbed ends at the tips of lamellipodia free to add subunits.
منابع مشابه
Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner.
We examined the effects of mechanical forces on actin polymerization at focal adhesions (FAs). Actin polymerization at FAs was assessed by introducing fluorescence-labeled actin molecules into permeabilized fibroblasts cultured on fibronectin. When cell contractility was inhibited by the myosin-II inhibitor blebbistatin, actin polymerization at FAs was diminished, whereas alpha(5)beta(1) integr...
متن کاملInduction of Actin Polymerization in Permeabilized Neutrophils
We have used streptolysin-0 (SO)-permeabilized neutrophils to investigate the signal transduction pathway through which chemoattractants induce actin polymerization. Chemoattractants stimulate phosphorylation of various proteins and lipids but whether these phosphorylations are required for actin polymerization is not known. Addition of guanosine 5’-3-0-(thio)triphosphate (GTPyS) to SO-permeabi...
متن کاملMyosin phosphorylation triggers actin polymerization in vascular smooth muscle.
A variety of contractile stimuli increases actin polymerization, which is essential for smooth muscle contraction. However, the mechanism(s) of actin polymerization associated with smooth muscle contraction is not fully understood. We tested the hypothesis that phosphorylated myosin triggers actin polymerization. The present study was conducted in isolated intact or beta-escin-permeabilized rat...
متن کاملIn Vitro Reconstitution of Cortical Actin Assembly Sites in Budding Yeast
We have developed a biochemical approach for identifying the components of cortical actin assembly sites in polarized yeast cells, based on a permeabilized cell assay that we established for actin assembly in vitro. Previous analysis indicated that an activity associated with the cell cortex promotes actin polymerization in the bud. After inactivation by a chemical treatment, this activity can ...
متن کاملDynamics of phosphatidylinositol 4,5-bisphosphate in actin-rich structures
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) is known to regulate a wide range of molecular targets and cellular processes, from ion channels to actin polymerization [1] [2] [3] [4] [5] [6]. Recent studies have used the phospholipase C-delta1 (PLC-delta1) pleckstrin-homology (PH) domain fused to green fluorescent protein (GFP) as a detector for PI(4,5)P(2) in vivo [7] [8] [9] [10]. Altho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 114 شماره
صفحات -
تاریخ انتشار 1991